Efficient determination of the Hamiltonian and electronic properties using graph neural network with complete local coordinates
نویسندگان
چکیده
Abstract Despite the successes of machine learning methods in physical sciences, prediction Hamiltonian, and thus electronic properties, is still unsatisfactory. Based on graph neural network (NN) architecture, we present an extendable NN model to determine Hamiltonian from ab initio data, with only local atomic structures as inputs. The rotational equivariance achieved by our complete coordinates (LCs). LC information, encoded using a convolutional designed preserve Hermitian symmetry, used map hopping parameters onto structures. We demonstrate performance graphene SiGe random alloys examples. show that model, although trained small-size systems, can predict well properties such band densities states for large-size systems within accuracy, justifying its extensibility. In combination high efficiency which takes seconds get 1728-atom system, work provides general framework efficiently accurately, new insights into computational physics will accelerate research large-scale materials.
منابع مشابه
scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
investigation of the electronic properties of carbon and iii-v nanotubes
boron nitride semiconducting zigzag swcnt, $b_{cb}$$n_{cn}$$c_{1-cb-cn}$, as a potential candidate for making nanoelectronic devices was examined. in contrast to the previous dft calculations, wherein just one boron and nitrogen doping configuration have been considered, here for the average over all possible configurations, density of states (dos) was calculated in terms of boron and nitrogen ...
15 صفحه اولassessment of the efficiency of s.p.g.c refineries using network dea
data envelopment analysis (dea) is a powerful tool for measuring relative efficiency of organizational units referred to as decision making units (dmus). in most cases dmus have network structures with internal linking activities. traditional dea models, however, consider dmus as black boxes with no regard to their linking activities and therefore do not provide decision makers with the reasons...
determination of some physical and mechanical properties red bean
چکیده: در این تحقیق، برخی خواص فیزیکی و مکانیکی لوبیا قرمز به-صورت تابعی از محتوی رطوبت بررسی شد. نتایج نشان داد که رطوبت بر خواص فیزیکی لوبیا قرمز شامل طول، عرض، ضخامت، قطر متوسط هندسی، قطر متوسط حسابی، سطح تصویر شده، حجم، چگالی توده، تخلخل، وزن هزار دانه و زاویه ی استقرار استاتیکی در سطح احتمال 1 درصد اثر معنی داری دارد. به طوری که با افزایش رطوبت از 54/7 به 12 درصد بر پایه خشک طول، عرض، ضخام...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Machine learning: science and technology
سال: 2023
ISSN: ['2632-2153']
DOI: https://doi.org/10.1088/2632-2153/accb26